
Node.js and Express.js

Recitation 9/21/2023

Walk through prep solution

Node.js

● Server-side JavaScript runtime environment

● Built for web development

● Comes with lots of packages

Express.js

● Popular Node.js backend web application framework

● Handles routing

Express & Web APIs

● You may have seen code like this for a GET request to the
“/users/:username” endpoint (e.g., /users/daniel):

router.get("/users/:username", async (req: Request, res: Response) => {

const users = await User.getUsers(req.params.username);

res.status(200).json({

message: “Found user”,

user: users[0],

});

})

Express & Web APIs

● In the framework given in the starter code, here’s how we might write a GET
request to the /users/:username endpoint to get a single user:

@Router.get("/users/:username")
async getUser(username: string) {

const users = await User.getUsers(username);
return { msg: “Found user”, user: users[0] }

};

(src/framework/router.ts handles the status part)

Parameters

● Path params: “eecs.mit.edu/people/daniel-jackson/”

● Query: “student.mit.edu/catalog/search.cgi?search=6.1040”

● Body: not in URL, can be a JSON

More review:
https://web.mit.edu/6.102/www/sp23/classes/18-message-passing-networking/#we
b_apis

https://web.mit.edu/6.102/www/sp23/classes/18-message-passing-networking/#web_apis
https://web.mit.edu/6.102/www/sp23/classes/18-message-passing-networking/#web_apis

Parameters

● Params example: @Router.get("/posts/:postId)
○ GET /posts/65012cf9be58f89b0c6d096b

● Query example: getUsers(username: string)
○ GET /users?username=dnj

● Body example: createPost(content: string)
○ POST body { content: “This is my post” }

Parameters

In our framework:

● If the parameter name is “session”, it’s read as express-session (which we pass
into WebSession)

● If the parameter name is “params”, “query”, or “body”, it is read from
req.params, req.query, or req.body, respectively

● Otherwise, the parameter is searched for in req.params, req.query, and
req.body, in that order

Parameters

● If the parameter name is not “session”, “params”, “query”, or “body”. the
parameter is searched for in req.params, req.query, and req.body, in that order

● For this example:

 @Router.post("/posts")
 async createPost(session: WebSessionDoc, content:
string) { … }

We will send “content” in the request body. When interpreting the parameters
here, the router will look first at req.params (but it won’t find content because
we have no URL params), will then look at req.query, and since it won’t find it
there since we sent it in body, it will finally look in req.body.

Validation

● What if we want to throw an exception if something is invalid?

● In this example, User.addUser should be written to throw an exception when
there is already a user with that username, so we don’t need any if/else logic
here

@Router.post("/users")
async addUser(username: string, password: string) {

await User.addUser(username, password);
return { msg: “Successfully added user” }

};

Exercise: Validation

Exercise

● Clone https://github.com/61040-fa23/node-express-rec-1-exercise

● Right now, you can start a session with a user who isn’t registered yet

● Working with a partner, add a check that makes sure the user is registered
before they can start a session

● Keep in mind that you should NOT add new control flow, but rather, add a new
function that throws an error if the username is invalid

https://github.com/61040-fa23/node-express-rec-1-exercise

Walk through solution

Walk through starter code

