
data design

Daniel Jackson & Arvind Satyanarayan

6.1040 · software studio · fall 2023

today’s learning objectives

get fuller grasp of relational state declarations
be aware of different database models, esp NoSQL
know about classical data modeling
design concept data models
implementation considerations

database models

4

5

App
showings

movies

theaters

Array

Array

Array title
rating
genre

Movie

screen
time
movie
theater

Showing

showings
name

location

Theater

Array

"Regal"
String

"Fenway"
String

"Crazy
Rich
Asians"

String

0.93
Number

"RomCom"
String

10
Number

7:00pm
Time

Object Model
Application root references
collections of class instances
that describe primitive data.

✓ Quick to prototype.

✓ Easy to experiment with
arbitrary data structures.

✘ Refactoring is difficult.

✘ No advanced querying: can
only iterate over collections,
follow references.

6

Relational Model (SQL)
Relations (aka tables) of attributes (aka columns) and
tuples (aka rows).

✓ Standardized query language (SQL) regardless of
backend engine (MySQL, PostgreSQL, SQLite, ...).

✓ Relational theory encourages better separation of
concerns (called "normalization").

✓ Over 40 years of research into performance and
robustness (indexing, transactions, integrity, ...).

✘ (Until recently) did not offer JSON types.

✘ (Until recently) difficult to scale horizontally. Vertical
scaling (i.e., make server more powerful) was the
easiest option.

id theater screen movie time
1 3 5 2 7:00pm
..
.

...

Showings

id name location
...
3 "Regal" "Fenway"

Theaters

id title rating genre
...
2 “Crazy Rich

Asians”
“PG-13” “RomCom”

Movies

_id 3

title "Crazy Rich
Asians"

time 7:00pm

genre "RomCom"

theater
name "Regal"

location "Fenway"

_id 4

title "Crazy Rich
Asians"

time 7:30pm

genre "RomCom"

theater
name "AMC"

location "Boston
Common"

7

NoSQL
Collections of nested documents (or graph structures).

✓ Quick to prototype (documents stored as JSON).

✓ Easy to experiment with arbitrary data structures.

✓ Pattern matching by document structure.

✓ Horizontal performance (i.e., many less-powerful
servers, rather than a single very powerful one).

✘ No standardized query language.

✘ Embedded documents = easier to make poor design
decisions.

✘ (Until recently) no references between collections:
complexity of lookups occurs at the application level.

Showings

"Not Only SQL"

Mongo:
a NoSQL database

9

MongoDB CRUD Operations
db.showings.insertOne({})
db.showings.insertMany([{}, {}, ...])

{
 "_id": ObjectId(),
 "title": "Crazy Rich Asians",
 "genre": "RomCom",
 "showtime": Date("2022-10-07 15:30"),
 "theater": {
 "name": "AMC",
 "location": "Boston Common"
 }
}

Documents are JSON-like structures
("BSON") that offers additional data
types like Date, RegExp, or binary data.

Every document must have an _id, and
it must be unique within the collection.

_id is generated automatically by
MongoDB via ObjectId (you can
override it, but you really shouldn't!).

10

MongoDB CRUD Operations
db.showings.insertOne({})
db.showings.insertMany([{}, {}, ...])

{"title": "Crazy Rich Asians"}

db.showings.findOne({})
db.showings.find({})

{
 "theater": {
 "name": "AMC"
 }
}

{
 "title": "Crazy Rich Asians",
 "theater.name": "AMC"
}

{"$or": [
 {"title": "Crazy Rich Asians"},
 {"theater.name": "AMC"}
]}

{"theater.name": {
 "$in": ["AMC", "Regal"]
}}

{"showtime": {
 "$gte": Date("2022-10-07")
 "$lte": Date("2022-10-10")
}}

11

MongoDB CRUD Operations
db.showings.insertOne({})
db.showings.insertMany([{}, {}, ...])

db.showings.findOne({})
db.showings.find({})

db.showings.updateOne({}, {"$set": ...})
db.showings.updateMany({}, {"$set": ...})
db.showings.replaceOne({}, {})

db.showings.deleteOne({})
db.showings.deleteMany({})
db.showings.drop()

12

Multiple Collections vs. Embedded Documents
db.theaters.insertOne({
 "_id": 1, "name": "AMC", ...
})

db.movies.insertOne({
 "_id": 3,
 "title": "Crazy Rich Asians",
...

})

db.showings.insertOne({
"_id": 5, "theater": 1, "movie": 3,
"showtime": Date()

})

db.movies.insertOne({
"_id": 3,
"title": "Crazy Rich Asians",
"showings": [
{
"theater": {"name": "AMC", ...},
"showtime": Date()

}
]

})

13

Multiple Collections vs. Embedded Documents
✓ More flexible querying (e.g., sorting results) ✘ Limited to insertion order

✘ Each document (including all embedded
documents, arrays, etc) cannot be larger
than 16MB.

✘ Separate collections require more work: you
have to manually join things together.

amc = db.theaters.find({"name": "AMC"})
amc_ids = amc.map(t => t._id)
movies = db.movies.find({
"theater": "$in": amc_ids

})

1. How many embedded objects do you have? One? A few? Many?

2. Does the embedded document relate to any other collections?

3. How often will you need the embedded document without the
parent, or vice versa?

{"theater.name": "AMC"}

designing a database:
the classic approach

step 1: identify entities and relationships

Genre

genre

MovieTitle
title

theater

Rating

Showing

Theater

AddressName

Screen

Time

rating

time

showings

name address

screen

big idea:
boxes are sets,

arrows are relations

why is this good?
simple semantics
rep-independent

relations = predicates
(Barbie, 4.1) in rating
IsRated (Barbie, 4.1)

relations + diagram:
show possible
navigations

a common confusion: arrow direction

arrow direction is NOT
navigation

or containment

can switch direction
so long as relation is

interpreted consistently

really matters for
homogeneous relations

Movie

Showing

showings

Movie

Showing

movie User

invited

(alice, bob) in invited:
alice invited bob

or bob invited alice?

step 2: adding multiplicities

multiplicities:
= 1: one, !

<= 1: lone, opt, ?
>= 1: some, +

>= 0: set, default
Movie

theater

Showing

TheaterScreen

showings

screen

Movie

theater

Showing

TheaterScreen

showings

screen

!

!!

tells you how many
on that end of the arrow:
one movie per showing
any showings per movie

many different notations for abstract data models

Person Location
birthplace !

Person Location
birthplace one

step 3: transform to a database schema (relational)

id title genre

1 Crazy Rich Asians RomCom

2 Barbie Fantasy

movies

id movie screen theater time

1 1 2 35 3:00pm

2 1 1 23 7:00pm

showings

Movie

theater

Showing

TheaterScreen

showings

screen

!

!!

Genre

genre

Title
title!

!
Time

time !

constraint:
no set-valued columns

step 3: transform to a database schema (object oriented)

class Movie {
 Title title;
 Genre genre;
 Map [Date, Set [Showing]] showings;
 }

class Showing {
 Screen screen;
 Theater theater;
 Date time;
}

Movie

theater

Showing

TheaterScreen

showings

screen

!

!!

Genre

genre

Title
title!

!
Time

time !

constraint:
queries follow fields

step 3: transform to a database schema (collection database)

constraint:
embedded objects

preferably immutable

id 1

title Crazy Rich Asians

time 7:00pm

genre "RomCom"

screen 2

theater
name "AMC"
address "401 Park Dr”

showings

AddressName

name address

Movie

theater

Showing

TheaterScreen

showings

screen

!

!!

Genre

genre

Title
title!

!
Time

time !

some considerations in classic schema design

what’s even possible to represent?
in relational database, fields must be scalars

what’s the cost of queries?
relational joins can be costly, but mitigated by indexes
in Mongo etc, joins are not as efficient as in SQL
in OOP, beware of queries that require search

what’s the cost of updates?
may need to lock the table/document/object, preventing reads
in Mongo, embedded objects must be kept consistent

multiplicities are important!

Genre

genre

MovieTitle
title

theater

Rating

Showing

Theater

AddressName

Screen

Time

rating

time

showings

name address

screen

and what’s the
programming impact of

getting them wrong?

discuss: what are these
multiplicities?

movie with more than one genre

movies with the same title

a double feature of two movies with one title

problems with the classic approach

Genre

genre

MovieTitle
title

theater

Rating

Showing

Theater

AddressName

Screen

Time

rating

time

showings

name address

screen

what’s in the model?
how do you decide

what data to include?

modularity?
how do you make a

modular app?

reuse?
every data model

is a new one!

designing a database:
the concept approach

what if we identified concepts instead?

what are the key
concepts?

can we disentangle services?

standard criteria:
clear purpose

separable & reusable
familiar

other hints:
who updates?

frequency of updates?

some candidate concepts

update frequency
Movie: 2/day

Business*: 1/day
Showing: 10k/day

*theaters only

concept Movie

purpose info about all movies

state
 genres: Movie -> set Genre
 title: Movie -> one Title
 year: Movie -> one Year
 remakeOf, sequelTo: Movie -> opt Movie

concept Showing [Movie, Theater]

purpose info on current movie showings

state
 movie: Showing -> one Movie
 theater: Showing -> one Theater
 time: Showing -> one Date
 screen: Showing -> one String

concept Business [Location]

purpose info on businesses

state
 name: Business -> one String
 address: Business -> one Address
 website: Business -> one URL
 location: Business -> one Location

update method
Movie: approved users?

Business: verified?
Showing: verified?

new concepts
will need concept

for verifying businesses

drawing a global data model (1)

concept Movie

purpose info about all movies

state
 genres: Movie -> set Genre
 title: Movie -> one Title
 year: Movie -> one Year
 remakeOf, sequelTo: Movie -> opt Movie

concept Showing [Movie, Theater]

purpose info on current movie
showings

state
 movie: Showing -> one Movie
 theater: Showing -> one Theater
 time: Showing -> one Date
 screen: Showing -> one String

concept Business [Location]

purpose info on businesses

state
 name: Business -> one String
 address: Business -> one Address
 website: Business -> one URL
 location: Business -> one Location

Movie

remakeOf, sequelTo

Title Genre Year

title genres year

Business

String Address URL

Location
location

name
address

website

ShowingMovie

Date String

Theater
theatermovie

time
screen

drawing a global data model (2)

app ShowtimeDatabase

include
 Movie
 Showing [Movie.Movie, Business.Business]

Movie

remakeOf, sequelTo

Title Genre Year

title
genres

year

Business

String Address URL

Location
location

name
address

website

Showing

Date String

theatermovie

time
screen

Movie
Showing Business

queries across concepts
application view

composes elements from
each concept

how to handle locations?

concept Location [POI]

purpose find points of interest by location

principle
 after POIs are added using makeLoc/add,
 you can find nearby POIs using makeLoc/findNearby:
 makeLoc (a1, l1); add (p1, l1); …
 makeLoc (a2, l2); add (p2, l2); …
 makeLoc (a, l); findNearby (l, s)
 {s contains POIs from p1, … near to address a}

state
 location: POI -> one Location

actions
 add (p: POI, l: Location)
 makeLoc (addr: String, out l: Location)
 findNearby (l: Location, out s: set POI)

data structure/algs
hierarchical regions

quadtree, eg

can you add ratings of movies and theaters?

concept Rating [Item, User]

purpose crowdsource quality measure

state
 avgRating: Item -> one Int
 vote: User -> set Vote
 for: Vote -> one Item
 rating: Vote -> one Int

implementing in MongoDB

Movie

remakeOf, sequelTo

Title Genre Year

title
genres

year

Business

String Address URL

Location
location

name
address

website

Showing

Date String

theatermovie

time
screen

Movie
Showing Business

Movie {
 _id: ObjectId
 title: String
 genres: [String]
 year: Int
 }

Showing {
 _id: ObjectId
 movie: ObjectId
 time: Date
 screen: String
 theater: ObjectId
 }

Business {
 _id: ObjectId
 name: String
 website: String
 location: ObjectId
 address: String
 }

decisions
Mongo primitive types?
how many collections?

what about these?

Movie

remakeOf, sequelTo

Title Genre Year

title
genres

year

Business

String Address URL

Location
location

name
address

website

Showing

Date String

theatermovie

time
screen

Movie
Showing Business

Showing {
 _id: ObjectId
 movie: ObjectId
 time: Date
 screen: String
 theater: ObjectId
 }

MovieShowings {
 _id: ObjectId
 movie: ObjectId
 showings: [
 {
 theater: ObjectId
 screen: String
 time: Date
 }]
 }

TheaterShowings {
 _id: ObjectId
 theater: ObjectId
 showings: [
 {movie: ObjectId
 screen: String
 time: Date
 }]
 }

TheaterMovieShowings {
 _id: ObjectId
 theater: ObjectId
 movie: ObjectId
 showings: [
 {
 screen: String
 time: Date
 }]
 }

tradeoffs
relative benefits of

these representations?

summary of what you learned today

https://tinyurl.com/6104-feedback

database models
OO, relational, collection abstract data models

relations & sets, global diagram

concept-driven data
focus on separable services

implementation
types, collection structure

