
Daniel Jackson & Arvind Satyanarayan

6.1040 · software studio · fall 2023

concept design 
basics

how can you design 
really great software?

three examples of insanely good design

Adobe Lightroom Apple MacOS Finder UK Government Services

When you go to design a house you talk to an
architect first, not an engineer. Why is this?

Because the criteria for what makes a good
building fall outside the domain of engineering.

Similarly, in computer programs, the selection
of the various components must be driven by

the conditions of use.

How is this to be done? By software designers.

Mitchell Kapor, A Software Design Manifesto (1996)

physical linguistic conceptual

color, size, layout, 
type, touch

icons, labels, tooltips, 
site navigation

semantics, structure 
& behavior

concrete abstract

levels of design

confirming checkin details on El Al

Select passengers for checkin

Daniel Jackson

continue

replacing a manuscript on Arxiv

backing up on Backblaze

design systems

Google’s Material Design Apple’s Human Interface Guidelines

Microsoft Fluent Design Atlassian Design System

today’s learning objectives

recognize levels of design in software

understand role of conceptual models

know how to model concepts as state machines

understand idea of factoring concepts into patterns

use synchronization to compose concepts into an app

conceptual 
models

example: backblaze backup

assumed vs. actual conceptual models

1

2 3

1. file modified 
2. file backed up 
3. file restored

4

1
2

3 5

1. file modified 
2. list created 
3. files backed up 
4. files available 
5. file restored

projecting an accurate system image

from The Design of Everyday Things

user-centered design (1980s)

concepts are a byproduct of design

designer’s job: shape UI to project concepts

concepts are psychological

concept-based design

concepts are the essence of design

designer’s job: shape concepts

concepts are computational

concepts as 
state machines

the yellkey concept

concept Yellkey

purpose shorten URLs to common words

principle

 after registering a URL u for time t and getting a shortening s

 looking up s will yield u until the shortening expires time t later

can you identify actions?

which are by user? system?

actions

concept Yellkey

purpose shorten URLs to common words

principle

 after registering a URL u for time t and getting a shortening s

 looking up s will yield u until the shortening expires time t later

actions

 register (u: URL, t: int, out s: String)

 lookup (s: String, out u: URL)

 system expire (out s: String)

what must be stored to
support these actions?

a trace: <register (u1, t1, s1) ; lookup (s1, u1)>

state

concept Yellkey

purpose shorten URLs to common words

state

 used: set String 
 shortFor: used -> one URL 
 expiry: used -> one Date  
 const shorthands: set String

actions

 register (u: URL, t: int, out s: String)

 lookup (s: String, out u: URL)

 system expire (out s: String)

how to the actions

read/write the state?

concept Yellkey

state 
 used: set String 
 shortFor: used -> one URL 
 expiry: used -> one Date  
 const shorthands: set String

actions 
 register (u: URL, t: int, out s: String) 
 s in shorthands - used 
 s.shortFor := u 
 s.expiry := t secs after now 
 used += s

 lookup (s: String, out u: URL) 
 s in used 
 u := s.shortFor

 system expire (out s: String) 
 s.expiry is before now 
 used -= s 
 s.shortFor := none 
 s.expiry := none

design question: 
what if register replaced

existing shorthands for u 
instead of adding one?

precondition

non-
determinism

relational state

used: set String 
shortFor: used -> one URL

why write this

Map [String, URL] shortFor;

rather than this?

sets & relations are simple and rep-independent

used = {"hello", "there"} 
shortFor = {("hello", "dnj.photo"),("there", "nytimes.com")}

can apply set & relation operators

findShorthandsFromURL (u: URL, out s: set String) 
 s = u.~shortFor

what do updates mean?

s.shortFor := u means: 
shortFor after is shortFor before, with all 
pairs from s removed, and a new pair to u added

https://dnj.photo
http://nytimes.com

factoring concepts 
into reusable patterns

Mont Saint Michel (1450–1521) MIT (Bosworth, 1916) Stata Center (Gehry, 2004)

19791977

can we factor yellkey into more familiar patterns?

concept Yellkey

purpose shorten URLs to common words

state

 used: set String 
 shortFor: used -> one URL 
 expiry: used -> one Date  
 const shorthands: set String

actions

 register (u: URL, t: int, out s: String) 
 lookup (s: String, out u: URL) 
 system expire (out s: String)

is there a separable  
concept in here?

concept Shorthand [Target]

purpose provide access via shorthand strings

principle 
 after registering a target t and obtaining a shorthand s, 
 looking up s will yield t: register (t, s); lookup (s, t') {t' = t}

state 
 used: set String 
 shortFor: String -> opt Target 
 const shorthands: set String

actions 
 register (t: Target, out s: String) 
 s in shorthands - used 
 s.shortFor := t ; used += s

 unregister (s: String) 
 s in used 
 used -= s ; s.shortFor := none

 lookup (s: String, out t: Target) 
 s in used 
 t := s.shortFor

concept ExpiringResource [Resource]

purpose handle expiration of short-lived resources

principle 
 if you allocate a resource r for t seconds, after t seconds 
 the resource expires: allocate (r, t); expire (r)

state 
 active: set Resource 
 expiry: Resource -> one Date

actions 
 allocate (r: Resource, t: int) 
 r not in active 
 active += r ; r.expiry := t secs after now

 deallocate (r: Resource) 
 r in active; active -= r ; r.expiry := none

 renew (r: Resource, t: int) 
 r in active ; r.expiry := t secs after now

 system expire (out r: Resource) 
 r in active ;r .expiry is before now; 
 active -= r; r.expiry := none

a polymorphic concept

can you explain Yellkey in terms of these concepts?

a familiar concept has many uses

examples of uses of ExpiringResource

Wifi on airplane

discount coupon

credit card, passport, driving license

two factor authentication code

…

composition by
synchronization

concept Shorthand [Target]

purpose provide access via shorthand strings

principle 
 after registering a target t and obtaining a shorthand s, 
 looking up s will yield t: register (t, s); lookup (s, t') {t' = t}

state 
 used: set String 
 shortFor: String -> opt Target 
 const shorthands: set String

actions 
 register (t: Target, out s: String) 
 s in shorthands - used 
 s.shortFor := t ; used += s

 unregister (s: String) 
 s in used 
 used -= s ; s.shortFor := none

 lookup (s: String, out t: Target) 
 s in used 
 t := s.shortFor

concept ExpiringResource [Resource]

purpose handle expiration of short-lived resources

principle 
 if you allocate a resource r for t seconds, after t seconds 
 the resource expires: allocate (r, t); expire (r)

state 
 active: set Resource 
 expiry: Resource -> one Date

actions 
 allocate (r: Resource, t: int) 
 r not in active 
 active += r ; r.expiry := t secs after now

 deallocate (r: Resource) 
 r in active; active -= r ; r.expiry := none

 renew (r: Resource, t: int) 
 r in active ; r.expiry := t secs after now

 system expire (out r: Resource) 
 r in active ;r .expiry is before now; 
 active -= r; r.expiry := none

adding a synchronization

what other actions need

synchronizing?

synchronizing concepts

app YellKey 
 include HTTP 
 include Shorthand [HTTP.URL]  
 include ExpiringResource [String]

 sync register (url: URL, short: String, life: int) 
 when Shorthand.register (url, short) 
 ExpiringResource.allocate (short, life)

 sync expire (out short: String) 
 when ExpiringResource.expire (short) 
 Shorthand.unregister (short)

 sync lookup (short: String, url: URL) 
 Shorthand.lookup (short, url)

concept Shorthand concept ExpiringResource

register (url1, s1) when register (u, t) 
allocate (u)

allocate (s1, 3600)

lookup (s1, url1)

unregister (s1) when expire (r) 
unregister (r)

expire (s1)
sync is from CSP

concept behavior

is preserved!

user sessions

user session

a familiar combination

concept User

purpose authenticate users

principle 
 after a user registers with a username and password, 
 they can authenticate as that user by providing a matching 
 username and password: 
 register (n, p, u); authenticate (n, p, u') {u' = u}

state 
 registered: set User 
 username, password: registered -> one String

actions 
 register (n, p: String, out u: User) 
 authenticate (n, p: String, out u: User)

concept Session [User]

purpose authenticate user for extended period

principle 
 after a session starts (and before it ends),  
 the getUser action returns the user identified at the start: 
 start (u, s); getUser (s, u') {u' = u}

state 
 active: set Session 
 user: active -> one User

actions 
 start (u: User, out s: Session) 
 getUser (s: Session, out u: User) 
 end (s: Session)

what syncs are needed? do sessions last forever?where is one of these used
without the other?

why two concepts are needed

application of User without Session: application of Session without User:

authenticating one-off actions in operating systems 
MacOS: authenticate when opening app for first time 

Unix: executing command requiring superuser

reauthenticating mid-session for critical actions 

confirming bank transfers

one time authentication in websites 

when cancelling a subscription

authenticating by different means 
biometrics such as facial recognition, fingerprint

unauthenticated sessions 
in some games and chat apps, user just enters name

putting it all together

concept ExpiringUserSession 
 include User 
 include Session [User.User] 
 include ExpiringResource [Session.Session]

 sync register (username, password: String, out user: User) 
 User.register (username, password, user)

 sync login (username, password: String, out user: User, out s: Session) 
 when User.authenticate (username, password, user) 
 Session.start (user, session) 
 ExpiringResource.allocate (session, 300)

 sync logout (s: Session) 
 when Session.end (session) 
 ExpiringResource.deallocate (session)

 sync authenticate (s: Session, u: User) 
 Session.getUser (s, u)

 sync terminate (s: Session) 
 when ExpiringResource.expire (session) 
 Session.end (session)

summary of what you learned today

https://tinyurl.com/6104-feedback

levels of design faithful projection of 
conceptual model

convergent design
shaping a  

conceptual model

concept as 
state machine

composition by 
synchronization

patterns & 
factoring

