6.1040 - software studio - fall 2023

concept design
basics

Daniel Jackson & Arvind Satyanarayan



how can you design
really great software?



B 2 .
S 19“*|

AP

-

[

Adobe Lightroom

three examples of insanely g

EmE g

oo eEQosE

Irash

® Trash

Chiara

* calendar.ics

cart-fsm.|pg
ch-c-speech-pipor25-190613.pdf
Classroom 1€4_EOA TEP_Z.PNG
Classroom 164_EOA TEP PNG
ClecanShet 2C23-C7-18 at 1€.42.£8@2x
CleanShct 2C23-C7-19 at 14.41.26@2x
CleanSnhct 2C23-C7-20at 12.56.10@2x
CleanSnhet 2C23-C7-20 at 22.09.04@E2x
CleanShct 2023-C7-21 at 09.16.27@2x
CleanSnct 2C23-C7-21at 09.22 00@2x
CleanSnhct 2023-C7-21 at 09.22.33@2x
CleanShct 2023-C7-21 at 09.24.33@2x
CleanSnhct 2C23-C7-21at 09.25.03@2x
CleanSnct 2023-C7-21 at 09.36.14@2x

1 AN -
' LI_)AJ C

20,
21,
21,
21,
21,

21,

————————

02

[ I

- -
D, 202

M
o
J N
(N
(4]
o
o
UJ

) )

— ‘“
2023 &t 11:53 AM

2

)

3at12:4zFM

023 2t 4:26 FM

'3 at 1130 PM

3at4:17 PM

23 2t 11.53 AM

AM

23 et 11:53 AM
2023

3at11.53 AM

21, 2023 ot 11:63 AM

60C bytes
2.7 MB
T MB
003 KE
213 KE
160 KE
3.0 MB
3.8 MB
1.6 MB
1.2 MB
26 MB
7.8 MB
1.9 MB
1.7 MB

2 MB

Apple MacOS Finder

Oy Q

Empty
Knd
ICS Tile
JPEG Image
PDF Document
PNG imege
PNG Imzge
PNG imcge
PNG imege
PNG Imzge
PNG imcge
PNG imege
PNG Imzge
PNG imcge
PNG imege
PNG Imzge

PNG imcge

ood design

.\‘;}' GOV.UK v Meamw

Hurw » Fasaper s Fevelaw livirg aleosl oo s

Renew orreplace your adult
passport

Certents

Jrerview

. Rolated cortant
Overview

TEONMS EX2 SU O raaew o raplace yoOur PASSHIT ITYOUARLy 20kre or E9 31t
yot 81 InApaper tom

You must beaged 16 or over (or turing 16 n the neat 2 weeks) 10 cet an adul;
Jaxspal Theee's @ Jifberenl soces: oyel a sasspaLforaclild, Pas:

Thers ore cifferen! ways to renew erreplace yo ur pisapert if pou're outside
Fe UK.

How long it takes

UK Government Services



When you go to design a house you talk to an
architect first, not an engineer. Why is this?

Because the criteria for what makes a good
building fall outside the domain of engineering.

Similarly, in computer programs, the selection
of the various components must be driven by
the conditions of use.

How is this to be done? By software designers.

Mitchell Kapor, A Software Design Manifesto (1996)



physical

color, size, layout,
type, touch

concrete
I

levels of design

linguistic

icons, labels, tooltips,
site navigation

conceptual

semantics, structure
& behavior

abstract



confirming checkin details on E| Al

11:59 =

4 Mail

* Due to operational limitations in our
narrow body aircrafts, EL AL reserves the
right to store hand luggage in the aircraft
holds in case it is needed.

* Duty free items purchased at the airport
prior to the flight will be considered as
hand luggage.

* Any exceedance to the hand luggage
eligibility mentioned above is subject to

the excess baggage policy and charges. Select passerngers for checkin

If you purchased FLEX fare tickets, you ‘ D a n I e ‘ \J aC kSO n

can carry 2 pieces of hand luggage to
the cahin. Total weight far both shall be
up to 12KG. Note that the Weight
limitation for one hand bag is BKG.

© Secure Flight Privacy Notice
THE FOLLOWING NOTICE APPLIES ONLY
TO PASSENGERS FLYING TO, FRCOM OR
WITHIN USA, OR OVERFLYING U.S
TERITORY (TO AND FROM CANADA):
| confirm the details of the

passengers and all the conditions w
and restrictions

AA & elal.com G

< (M an D




replacing a manuscript on Arxiv

Articles You Own =| Science
L Replace ** Withdraw = Cross list .] Journal ref 83 Annotate Link code & data

Identifier Primary Category | Title Actions Author

2304.14975 |cs.SE Concept-centric Software Development | [##] o= = I : Y




backing up on Backblaze

) Backblaze

A dnj@mit.edu @

You are backed up as of: 5/17/23, 4:26 PM

' Selected for Backup: 916,605 files / 211,505 MB
Backup Schedule: Continuously
Remaining Files: 916,605 files / 211,505 MB

Restore Options...

Settings...

Version History: 30 days Upgrade
Manage account at Backblaze.com

Questions? Help Center

Your data is NOT backed up. Buy Already bought? 0




design systems

roeaw
]
L N
Cot il
L
" D a t e
VTERT STt am
Dowvico
Avg17 Aug23 2
0
Now sdelimn . ~ f » ’
,f) I ‘ e I S Asgust A1
Snioe ' .
o Dt prokers ket people selsct @ date, o a range of
" L
A dates ’ ' ’
LOTROnerT
2 ] . " ” "
)
] H 2 ~
ey
0 specs B ek T Acsassrary
& Date packars can dsplay past esaet of future dales <4 U page
= -7 " | ' Date
pe ypars s, nigcke, s gt
L
G I ' Materi I Desi
F Auest 2 I:'_r.,mn-n |l
PR £ T
Ov ths page
> Maglengeags ‘ \vata r .
yre
Gudeli . . Bob 2o
' . A svatar chows an image or tact 1o represent a person of group ac well a: give ’
R additioral indornation like tusr status and activty. Aty
v Componerts
If YOU Nead TO represert many SVatars, try SVatar group.
) LRy
Sorowtion IL.)Q (et
Aroder
Sevw [ Types
4:;'
e
~1
hecib
Q me "
srebOoox
=]
et
Mo
Standard Group
~emaith

& Deoveloper rocers

Do Cooam Dol

Design

2ok

Dwrven AVhat's sew

Human Interface Guidelines

Suopur ! Mo

Feuaces

Tne HIC contsins guidancs ard best crectices that can relp
you design & great experiercz for eny Apole platform

New and updated

€O

Designing fos visnls

L

Soaal layout

Inmersive expeiences

Omaments Eves

srareplay

Microsoft Fluent Design

Apple’s Human Interface Guidelines

A ATLASS ANDQ;'ngygmm Cot 1aned  Bisnd  Foarclwicem  Tobues  Componerts  Cietie

Design, develap, deliver

Usg Atlassior’s end-tc-grd J3gsign lianguage to

reate sim pk’,iﬂ'. uitdve cnd Leautif Jl QMPOIIDNCES.

20 Sec the futwre of Achazaien Design Systens.

B Tokens

ﬁ‘ B Companents

1

e

sreh

Tharra

Atlassian Design System



today’s learning objectives

recognize levels of design in software

understand role of conceptual models

know how to model concepts as state machines
understand idea of factoring concepts into patterns

use synchronization to compose concepts into an app




conceptual
models



example: backblaze backup

< ::it  Backblaze Backup Q

dnj@mit.edu
You are backed up as of: 6/6/22, 10:10 PM

Currently backing up newer files

Pause Backup

—_— d

Restore Options... .

Selected for Backup: 509,021 files / 2,379,995 MB Settings...

Backup Schedule:  Continuously What is being backed up?
Remaining Files: O files / 0 KB

Transferring: photo.0259-22.RAF How long will my first backup take?

View files and manage account at: Backblaze.com



wnN =
—h —h =h

assumed vs. actual conceptual models

\
. 1
1. file modified
D 2. list created
e modified 3. files backed up
e backed up y— 4. files available
e restored 5. file restorea



projecting an accurate system image

. DESIGN

from The Design of Everyday Things



user-centered design (1980s)

concepts are a byproduct of design
designer’sjob: shape Ul to project concepts
concepts are psychological

concept-based design

concepts are the essence of design
designer’s job: shape concepts
concepts are computational

PSICTIOLOGY
EVERADN THINGS




concepts as
state machines




eoe [~

<

)

) & yellkey.com <€ C

yellkey: url to common word shortener.

vellkey

enter url and length of time for key to exist.

Full url (e.g. http:Z/www.google.com) ’

5 minutes v

generate yellkey

your key is: best.

go to www.yellkey.com/best to use.

IMPORTANT:
yellkeys are NOT private. anyone can access your URL if they want to.
please be careful what links you choose to share through yellkey.

try out our yellkey browser extensions for
Google Chrome, Mozilla Firefox, and Apple Safari



the yellkey concept

concept Yellkey

purpose shorten URLs to common words

principle
after registering a URL u for time t and getting a shortening s
looking up s will yield u until the shortening expires time t later

can you identify actions?
which are by user? system?



actions

concept Yellkey
purpose shorten URLs to common words
principle
after registering a URL u for time t and getting a shortening s

looking up s will yield u until the shortening expires time t later
actions

regiSter (U: URI_, t: 'int, outs: Strmg) What must be Stored to

lookup (s: String, out u: URL) support these actions?
system expire (out s: String)

a trace: <register (ul, t1, s1); Iookup (s1, ul)>



state

concept Yellkey

purpose shorten URLs to common words

state

used: set String
shortFor: used ->one URL
expiry: used ->one Date

const short
actions
register (u:

nands: set String

URL, t: int, out s: String)

lookup (s: String, out u: URL)

system expire (out s: String)

how to the actions
read/write the state?



concept Yellkey

state
used: set String
shortFor: used ->one URL
expiry: used ->one Date
const shorthands: set String

actions
register (u: URL, t: int, out s: String)
sin shorthands - used
s.shortFor :=u
s.expiry :=t secs after now
used +=s

Nnon-

design question:
determinism

what if register replaced
existing shorthands for u
instead of adding one?

lookup (s: String, out u: URL)
precondition sin used

u:=s.shortFor

system expire (out s: String)
s.expiry 1s before now
used -=s
s.shortFor := none
S.eXpiry :=none



relational state

why write this

used: set String
shortFor: used -> one URL

rather than this?

Map [String, URL] shortFor; sets & relations are simple and rep-independent

used = {"hello", "there"}
shortFor={("hello", "dnj.photo"),("there", "nytimes.com")}

can apply set & relation operators

findShorthandsFromURL (u: URL, out s: set String)
s = u.~shortFor

what do updates mean?

s.shortFor := u means:
shortFor after is shortFor before, with all
pairs from s removed, and a new pair to u added


https://dnj.photo
http://nytimes.com

factoring concepts
into reusable patterns




Leo =T =%\\-2T

Mont Saint Michel (1450-1521) MIT (Bosworth, 1916) Stata Center (Gehry, 2004)




The
A Pattern Language Timeless Way of

Christopher Alexander
Sara Ishikawa - Murray Silverstein

e . Christopher Alexander
Max Jacobson - Ingrid Fiksdahl-King

Shlomo Angel

1977 1979



180 WINDOW PLACE **

A
"ﬁ‘

c W ‘4,—‘ : W\
! '/<
*-"" £ ie
v [
. B |
.
.l

. . . this pattern helps complete the arrangement of the windows
given Dy ENTRANCE ROOM (130), ZEN VIEW (I34), LIGHT ON
TWO SIDES OF EVERY ROOM (159Q), STREET WINDOWS (164).
According to the pattern, at least one of the windows In each

room needs to be shaped in such a way as to increase its useful-
ness as a space,

B

Everybody loves window seats, bay windows, and big

windows with low sills and comfortable chairs drawn up
to them.




can we factor yellkey into more familiar patterns?

concept Yellkey

purpose shorten URLs to common words

state
used: set String is there a separable
shortFor: used ->one URL concept in here?

expiry: used ->one Date
const shorthands: set String

actions

register (u: URL, t: int, out s: String)
lookup (s: String, out u: URL)
system expire (out s: String)



can you explain Yellkey in terms of these concepts?

concept Shorthand [Target] < a polymorphic concept concept ExpiringResource [Resource]
purpose provide access via shorthand strings purpose handle expiration of short-lived resources
principle principle
after registering a target t and obtaining a shorthand s, 1f you allocate a resource r for t seconds, after t seconds
looking up s will yield t: reqister (t, s); lookup (s, t') {t' =t} the resource expires: allocate (r, t); expire (r)
state state
used: set String active: set Resource
shortFor: String -> opt Target expiry: Resource -> one Date
const shorthands: set String actions
actions allocate (r: Resource, t: int)
register (t: Target, out s: String) r not in active
s1n shorthands - used active +=r; r.expiry :=t secs after now
s.shortFor:=t; used +=s deallocate (r: Resource)
unregister (s: String) rin active; active -=r; r.expiry := none
Sin used renew (r: Resource, t: int)
used -=s; s.shortFor :=none rin active ; r.expiry :=tsecs after now
lookup (s: String, out t: Target) system expire (out r: Resource)
sin used rin active ;r .expiry is before now;

t :=s.shortFor active -=r; r.expiry :=none



a familiar concept has many uses

examples of uses of ExpiringResource
Witi on airplane

discount coupon

credit card, passport, driving license

two factor authentication code



composition by
synchronization



adding a synchronization

concept Shorthand [Target] concept ExpiringResource [Resource]
purpose provide access via shorthand strings purpose handle expiration of short-lived resources
principle principle
after registering a target t and obtaining a shorthand s, 1f you allocate a resource r for t seconds, after t seconds
looking up s will yield t: reqister (t, s); lookup (s, t') {t' =t} the resource expires: allocate (r, t); expire (r)
state state
used: set String active: set Resource :
e - what other actions need
shortFor: String -> opt Target expiry: Resource -> one Date ..
const shorthands: set String actions synchronizing?
actions allocate (r: Resource, t: int)
register (t: Target, out s: String) r not in active
s1n shorthands - used active +=r; r.expiry :=t secs after now
s.shortFor:=t; used +=s deallocate (r: Resource)

unregister (s: String) rin active; active -=r; r.expiry := none
S 1N usec

used -=s: s.shortFor := none

renew (r: Resource, t: int)
rin active ; r.expiry :=t secs after now

lookup (s: String, out t: Target) system expire (out r: Resource)

s1n used rin active ;r .expiry 1s before now;
t :=s.shortFor active -=r; r.expiry :=none




synchronizing concepts

app YellKey
include HTTP
include Shorthand [HTTP.URL]}

include ExpiringResource [String]

sync reqgister (url: URL, short: String, life: int)
when Shorthand.register (url, short)
ExpiringResource.allocate (short, life)

sync expire (out short: String)
when ExpiringResource.expire (short)
Shorthand.unregister (short)

sync lookup (short: String, url: URL)
Shorthand.lookup (short, url)




concept behavior
is preserved!

concept Shorthand concept ExpiringResource

when register (u, t)
allocate (u)

C.A.R.Hoare

Communicating
Sequential
Processes

register (urll, s1) allocate (s1, 3600)

lookup (s1, urll)

CARA HOARE SERES EDITOR

when expire (r) expire (s1)

unregister (s1) :
5 unregister (r) sync is from CSP



user sessions



A Jackson structured programming (wikipedia.org)
106 points by haakonhr 63 days ago | hide | past | favorite | 69 comments

user session

A danielnicholas 63 days ago [-]

If you want an intro to JSP, you might find helpful an annotated version [0] of Hoare's explanation of JSP that I edited for a Michael Jackson festschrift
in 2009.

For those who don't know JSP, I'd point to these ideas as worth knowing:

- There’s a class of programming problem that involves traversing context-free structures can be solved very systematically. HTDP addresses this class,
but bases code structure only on input structure; JSP synthesized input and output.

- There are some archetypal problems that, however you code, can't be pushed under the rug—most notably structure clashes—and just recognizing
them helps.

- Coroutines (or code transformation) let you structure code more cleanly when you need to read or write more than one structure. It's why real
iterators (with yield), which offer a limited form of this, are (in my view) better than Java-style iterators with a next method.

- The idea of viewing a system as a collection of asynchronous processes (Ch. 11 in the JSP book, which |ater became JSD) with a long-running process
for each real-world entity. This was a notable contrast to OOP, and led to a strategy (seeing a resurgence with event storming for DDD) that began with
events rather than objects.

[0] https://groups.csail.mit.edu/sdg/pubs/2009/hoare-jsp-3-29-09...

A ob-nix 63 days ago [-]

... this brings back memories! In the late eighties I, as a teenager, found a Jackson Struct. Pr. book at the town library. I remember I was
amazed at the text and wondered why I hadn't heard about the method before.

If I remember correctly did the book clearly point out backtracking as a standard method, while mentioning that most languages lacked that, so
it had to be implemented manually.

A CraigJPerry 63 days ago [-]
This is referenced(1) as a core inspiration in the preface to "How to Design Programs” but i never researched it further because i‘ve found the “design

racrirnac! asmnnrascih ilm lREAN A e nratdyvy oalid in rasl 1ifa mralhlarmm e



a familiar combination

concept User concept Session [User]
purpose authenticate users purpose authenticate user for extended period
principle principle
after a user registers with a username and password, after a session starts (and before it ends),
they can authenticate as that user by providing a matching the getUser action returns the useridentified at the start:
username and password: start (u, s); getUser (s, u') {u' = u}
register (n, p, u); authenticate (n, p, u') {u' = u} state
state active: set Session
registered: set User user: active ->one User
username, password: registered -> one String actions
actions start (u: User, out s: Session)
register (n, p: String, out u: User) getUser (s: Session, out u: User)
authenticate (n, p: String, out u: User) end (s: Session)

where is one of these used

without the other? what syncs are needed? do sessions last forever?



why two concepts are needed

application of User without Session: application of Session without User:
authenticating one-off actions in operating systems authenticating by different means
MacOS: authenticate when opening app for first time biometrics such as facial recognition, fingerprint
Unix: executing command requiring superuser unauthenticated sessions
reauthenticating mid-session for critical actions in some games and chat apps, user just enters name

confirming bank transfers

onhe time authentication in websites
when cancelling a subscription



putting it all together

concept ExpiringUserSession
include User
include Session [User.User]
include ExpiringResource [Session.Session]

sync reqgister (username, password: String, out user: User)
User.register (username, password, user)

sync login (username, password: String, out user: User, out s: Session)
when User.authenticate (username, password, user)
Session.start (user, session)
ExpiringResource.allocate (session, 300)

sync logout (s: Session)
when Session.end (session)
ExpiringResource.deallocate (session)

sync authenticate (s: Session, u: User)
Session.getUser (s, u)

sync terminate (s: Session)
when ExpiringResource.expire (session)
Session.end (session)



summary of what you learned today

faithful projection of

levels of design
conceptual model

convergent design

composition by shapinga
synchronization conceptual model

patterns &
factoring

concept as
state machine

https://tinyurl.com/6104-feedback



