6.1040 - software studio - fall 2023

diverge/converge:
features to concepts

Daniel Jackson & Arvind Satyanarayan

introduction

what I like to do (or, my career in books...)

[THEj
tware Abstractions g

Daniel Jackson aniclJackson F .|- WA
l lorewand by Day o ACKarp

DANIEL JAKSIN

I

Alloy: a design language Mental health at MIT Concept design
(2006) (2017) (2021)

photography

V4
—
O
=
5,

e,

{ J

(]

My passion outsi

today’s learning objectives

get the idea of diverge/converge

nave some practice doing divergent design

earn the basic idea of concepts as software modules

nave some practice doing convergent design my second favorite
classic software
engineering idea

earn how to express subsets with dependency diagrams

diverge/

converge

two modes of thinking, two phases of design

generating ideas freely = coalescing & unifying
expanding possibilities reducing & simplifying
finding new directions identifying problems
ignoring barriers resolving conflicts
goal: space of options =~ goal: coherent design

techniques for divergent design

an example of a bad idea

brainstorming

generating lists of feature ideas
working collaboratively

taking improv posture “yes and”

lateral thinking

provocative idea generation: take a bad idea & pursue it |
identify and challenge assumptions https://riffle.systems

focus on overlooked aspects of problem

foraging for inspiration

perusing books in stores and libraries
going down internet rabbit holes
fixating on unusual things

let’s
brainstorm!

an example app

name SiteSpot
audience architecture enthusiasts
surpose Self-guided architectural tours

when you visit a neighborhood, helps you learn about the
design and history of the buildings as you walk around

brainstorming features
gap analysis

. . . 1 what'’s missing in existing apps?
info pops up automatically when in front of building 5 & PP

play audio so you can use app without your phone out viability

is critical mass needed?
scan building and it starts tour with AR (Yilin) who will generate content?
ghost view of internal structure from 3d models (Jin) where will revenue come from?
recommendations of things to see based on so far :
(Gowri) analogies

passers by leave facts geocaching (Amanda) are there similar apps or features?

crowdsourced reviews (Fthan)

bookmark locations for coming back late (Oomi)
contribute descriptions, maybe by owner (Luca)

recommend based on aggregated crowd behavior

(Shayla)

create route past favorite locations (Cal)

exploring social/ethical values

in convergent design
to constrain options, tweak behavior of concepts

in divergent design
to suggest new features, add safeguards

stakeholders

users with di

Terent abilities

nildren

considering ¢
indirect stake

time

nolders (not users)

impact on friendships

pervasiveness
other countries and geographies

values
autonomy an

d community

experience of values
environmental impacts

some features | came up with before class, roughly organized into areas

customized routes based on user prefs, starting point
show elevation, walk difficulty, safety of neighborhood
locate bike rental stations

track members of the group and show locations on map
introduce members of different groups/tours
live chat with other walkers

find coffee and ice cream shops on the way

link to websites for parks, museums and other sights
offer discount coupons for local stores & cafes

reviews and ratings of sights, city blocks, neighborhoods

stories of local inhabitants and artifacts about them
connect to local politics (eg, zoning, urban planning)

info pops up automatically when in front of building
play audio so you can use app without your phone out
show historical photos of the same site

augmented reality overlay of architectural features
point at building and have app tell you about it

filter landmarks or routes based on period, style, history
record where you've been, shows what you missed
save site as a favorite so you can review it later

send postcard to a friend using an image of the site

kids" mode: simpler explanations
P P
gamifying: points for spotting features or visiting sites

concepts

A Jackson structured programming (wikipedia.org) post session

106 points by haakonhr 63 days ago | hide | past | favorite | 69 commel..

upvote favorite

a uamennunvlas 63 days ago [-]

, , U helpful an annotated version [0] of Hoare's explanation of JSP that I edited for a Michael Jackson festschrift
user: danielnicholas user

created: 63 days ago ' I'd point to these ideas as worth knowing: comment

karma: 11 ing problem that involves traversing context-free structures can be solved very systematically. HTDP addresses this class,
UuUL pases uue struciure viny on input structure; JSP synthesized input and output.

- The karma 1e archetypal problems that, however you code, can't be pushed under the rug—most notably structure clashes—and just recognizing
them

- Coroutines (or code transformation) let you structure code more cleanly when you need to read or write more than one structure. It's why real
iterators (with yield), which offer a limited form of this, are (in my view) better than Java-style iterators with a next method.

- The idea of viewing a system as a collection of asynchronous processes (Ch. 11 in the JSP book, which |ater became JSD) with a long-running process
for each real-world entity. This was a notable contrast to OOP, and led to a strategy (seeing a resurgence with event storming for DDD) that began with

events rather than objects.

[0] https://groups.csail.mit.edu/sdg/pubs/2009/hoare-jsp-3-29-09...

A ob-nix 63 days ago [-]

... this brings back memories! In the late eighties I, as a teenager, found a Jackson Struct. Pr. book at the town library. I remember I was
amazed at the text and wondered why I hadn't heard about the method before.

If I remember correctly did the book clearly point out backtracking as a standard method, while mentioning that most languages lacked that, so
it had to be implemented manually.

A CraigJPerry 63 days ago [-]
This is referenced(1) as a core inspiration in the preface to "How to Design Programs” but i never researched it further because i‘ve found the “design

racrirnac! asmnnrascih ilm lREAN A e nratdyvy oalid in rasl 1ifa mralhlarmm e

upvote: a sample concept

concept Upvote

purpose rank items by popularity

principle after series of upvotes
of items, the items are ranked by
their number of upvotes

py L

. "
~
' N
-
| ‘. ’
5
3 .
A
. v
Lt /
»
b
.

Michael Polanyi (1891-1976)

similar Uls, very different concepts

concept Upvote concept Reaction concept Recommendation

purpose rank items by popularity purpose send reactions to author purpose use prior likes to recommend

principle after series of upvotes principle when user selects principle user’s likes lead to ranking
of items, the items are ranked by reaction, 1t’s shown to the author of kinds of items, determining which
their number of upvotes (often in aggregated form) 1tems are recommended

This is homework and I'm having a

are the definitions of the objects: Toaay v

8

o Daniel | think we should organize a
sig Library {

patrons : set Person, software concepts forum.

on_shelves : set Book, +
} S

what's a concept?

semantic purposive
user facing, not internal fulfills a user need
not Ul, but underlying function included for a reason

behavioral not just structural end-to-end, not a fragment

modular

mutually independent
generic (polymorphic)
reusable in other apps

? © ¢«

semantic purposive modular
user facing, not internal fulfills a user need mutually independent
not Ul, but underlying function included for a reason generic (polymorphic)
behavioral not just structural end-to-end, not a fragment reusable in other apps
login? User, Session
submit? Post, Moderation
comment count? Comment

navbar? breadcrumb? X

converging
on concepts

suppose we consider these features

info pops up automatically when in front of building
save site as a favorite so you can review it later

play audio so you can use app without your phone out
show historical photos of the same site

ocate bike rental stations

find coffee and ice cream shops on the way

ink to websites for parks, museums and other sights
stories of local inhabitants and artifacts about them

tactics in identifying concepts

fill in missing basic concepts: Building

use a familiar concept: LinkedArticle, Favorite

generalize: L ocalBusiness covers museum, cafe, bike station

make it generic: Building assets are photos, audio, etg;
Map points of interest can be buildings or businesses

Building
purpose: collect media assets around sites

principle: basic info & assets stored w/site, then
shown when site is selected later

LocalBusiness
purpose: offer basic info about local businesses

principle: store & retrieve by location/category

Map

purpose: show nearby points of interest
principle: after point of interest is registered, it

will appear on the map if near current location

LinkedArticle
purpose: make textual info navigable

principle: if you request article, content is

displayed with links you can follow to other
articles or external assets

Favorite
purpose: save items for later review

principle: if mark item, can select and view later

Photo, Audio (standard concepts)

dependency
diagrams

hacker news in one diagram

an app that includes
A must include B too

<

Karma

/N |

Favorite = |[Comment| Upvote | User <——Session

\ / subsets
v

Post (Post]

{Post, Upvote]

{Post, Upvote, Karma}

what are some dependencies for SiteSpot?

Building
Map
LocalBusiness
LinkedArticle
Photo Audio
Favorite

Coupon

dependencies for SiteSpot

LocalBusiness

\4
Photo Audio Map LinkedArticle Favorite < > User

v
Building

the origin of
dependencies

if the dependency diagram shows dependencies
what does it mean for concepts to be independent?

two kinds of dependency
extrinsic: from the context of usage
intrinsic: from the software component itself

concepts are decoupled
they have no intrinsic dependencies

examples of intrinsic dependencies
a function that calls another
an object oriented class that references another

Designing Software for Ease of Extension
and Contraction

DAVID L. PARNAS

Abstract—Designing software to be extensible and easily contracted is
discussed as a special case of design for change. A number of ways that
extension and contraction problems manifest themselves in current
software are explained. Four steps in the design of software that is
more flexible are then discussed. The most critical step is the design of
a software structure called the “uses” relation. Some criteria for design
decisions are given and illustrated using a small example, It is shown
that the identification of minimal subsets and minimal extensions can
lead to software that can be tailored to the needs of a broad variety of
users.

Index Terms-Contractibility, extensibility, modularity, software en-
gineering, subsets, supersets.

Manuscript received June 7, 1978; revised October 26, 1978. The
earliest work in this paper was supported by NV Phillips Computer In-
dustrie, Apeldoorn, The Netherlands. This work was also supported by
the National Science Foundation and the German Federal Ministry for
Research and Technology (BMFT). This paper was presented at the
Third International Conference on Software Engineering, Atlanta, GA,
May 1978.

The author is with the Department of Computer Science, University
of North Carolina, Chapel Hill, NC 27514. He is also with the Informa-
tion Systems Staff, Communications Sciences Division, Naval Research
Laboratory, Washington, DC.

I. INTRODUCTION

HIS paper is being written because the following com-
plaints about software systems are so common.

1) “We were behind schedule and wanted to deliver an early
release with only a <proper subset of intended capabilities>,
but found that that subset would not work until everything
worked,”

2) “We wanted to add <simple capability>, but to do so
would have meant rewriting all or most of the current code.”

3) “We wanted to simplify and speed up the system by re-
moving the <unneeded capability>, but to take advantage of
this simplification we would have had to rewrite major sec-
tions of the code.”

4) “Our SYSGEN was intended to allow us to tailor a sys-
tem to our customers’ needs but it was not flexible enough to
suit us.”

After studying a number of such systems, I have identified
some simple concepts that can help programmers to design
software so that subsets and extensions are more easily obtained.
These concepts are simple if you think about software in the
way suggested by this paper. Programmers do not commonly
do so.

0098-5589/79/0300-0128%00.75 © 1979 IEEE

a criterion for allowing intrinsic dependencies

3) The criteria to be used in allowing one program to use
another: We propose to allow A “uses” B when all of the fol-
lowing conditions hold:

a) A is essentially simpler because it uses B;

b) B is not substantially more complex because it is not al-
lowed to use A;

c) there is a useful subset containing B and not A;
d) there is no conceivably useful subset containing A but
not B.

class Post {
List<Comment> comments;

study the code
and extract all the
intrinsic dependencies

Parnas’s strategy

“Post uses comment”

Post

Y
Comment

draw a dependency
diagram of all
intrinsic dependencies

any app including Post
must include Comment too

check that every
dependency is
acceptable as an
extrinsic dependency

summary of what you learned

diverge/converge: two modes of design thinking

values: consider during brainstorming too

concepts: away to structure functionality

dependences & subsets: viewing a program as a family

let us know what's working for you and what isn't.
we'll use feedback to adjust week by week!
https://tinyurl.com/6104-feedback

