6.1040 - software studio - fall 2023

design reviews

Daniel Jackson & Arvind Satyanarayan

purposes of today’s class

inspire you by showing and appreciating great work
experience with you how to critique a design
give you ideas you can exploit in your final projects

point out pitfalls and common design mistakes

about the projects we're showing

all are examples of excellent work
like all designs, none are perfect

just a sample, not the only great projects

sonvitas
(luca musk)

2 O COMMUNITY NAME > Favortes Playlists Active

Communities

W, a
MUSIC Playlist Community
MUSIC o — 50 Name
Qe
CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION
CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION MUSIC Playlist -)
CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION -ommursty
USER SAPTION CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION Name

PostTre TAPTION CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION
CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION CAPTION
CAPTION CAPTION

USERNAME E il
b
J aption caption caption caption... > USIC — -
‘ See Mcre See More
MUSIC Caption captior caption caption... ..'O
& PLAYLISTNAME social communities built around musical genres
MUSI . . .
M3§.2 3 : g can post song with caption to community
MUSIC © O O : : .
MUSIC BD — automatically populates community playlist
MUSIC © ¥ 0O . .
MUSIC © ® 0O varlety of p|ay|I5tS
MUSIC © O G .
MUSIC © v O recent playlist, ranked by upvotes
MUSIC © ¥ O : ﬂ_- . | . h b .
MUSIC © SID official playlist, when members pin a song
MUSIC © v O . .
e B personal playlists and favorites

clever concept design ideas

Compilation[Owner, Content]
Purpose

Manage content through compiling and ordering.

Include Compilation[User, Music]
Include Compilation[Group, Music]
Include Compilation[Group, Post]

Compilation concept
generalized over playlists & group messages

holds owner, keeps Group concept familiar
(no need to add playlists to Group)

Caption[Media]

Purpose

Enable users to add text to media

Caption concept
creates composite objects

for instantiation of group posts

sync upvote(voter: User, p: Post, 1l: Groupl[Userl]):
assert Group.inCommunity(l, voter), p 1n Post.getPosts(1)

when Vote.upVoteCaontent(p)
Compilation.reorderCompilation(g,

sync with Vote concept
used to curate playlist for group

"recentsPlaylist", media ->

concept design issues

Post[User, Content, Location] sync post(u: User, m: Music, s: String, g: Groupl[User]):
Purpose c = Caption.createCaption(m,s)

assert Group.inCommunity(g, u)

when p = Post.post(c, g)

DatedObject.addItem(p)

Publish content visible to other users

PUtting location in Post Compillation.addContent(g, "timeline", p)

factors sets of posts out of compilation and group Compilation.addContent(g, "recentsPlaylist", m)

but playlists and chats have domain-specific properties

in particular, group has rules about who can post Grouplsers]

result is more complex synchronizations Purpose: Group users together

aISO GrOUP OPis Weak Principle: An user can register for a group, leave a group, and be checked for membel

In a group. New groups can also be created.

a better approach?

remove Post concept

include posts in Group along with access rules
rename Compilation to Playlist

include songs in Playlist with cursor etc

challenges & opportunities

how to curate a group’s official playlist?
let group have moderators and allow them to do it?

proliferating groups
are groups genres or friend groups?
how are they named and how do you find ones you like?

user feed

is there a feed of music posts independent of groups?
a way for users to discover groups?

how would it be filtered?

pen & pixel
(amirabbas kazeminia)

Friend suggestion

Jiary Pen & Pixel TIM Beaver . Pen & Pixel

You have written 200 words (2pts)

TIM Beaver

s

e TIM Beaver
=l

™
(L5 Meow Follow

0:\\ Poppy Follow

Your Tags based on your
recent diaries:

#Trip #School #Exam
Tim Beaver T: XXXXXXXXXXXXXXX #Cooking

Tim Beaver 2: XXXXXXXXXXXXXXX

You have 2 points. You
Tim Beaver 3: XXXXXXXXXXXXXXX can use them either to
send friend requests

or comment on your

Upload images N LN \".'-, > ‘." You can add two more comments with friends posts
Share ¥ Lt your two points

AR o @ e @ J \L AaB o @ AR o0 J N\ am o0 J

daily journalling share images & text others comment points (karma) suggestions
based on content

inferred by LLM

TIM Beaver

Add new comment

Tag concept

user diaries used with GPT to assign tags to users

clever concept design ideas

tags used to suggest friends

Incentivization & control

karma points prevent fri

maximum of one diary

ending until share diary

post/day

separation of diary from posting
can write diary entry and not share
(not yet implemented, but easy)

Point concept

considered storing points in User concept

tried to implement and

it became a mess

useful lesson about concepts vs OOP!

/Q /);(‘\%
) -
| ~
// ";" >
A / Frienckshiy
[|
CGJ'\ r“c’at ," I } \/
/ /
‘ W/
K User

very focused design with few concepts
but Tag should depend on Friendship?

Concept

purpose

principle

states

Concept

purpose

A user can send a friend request to any other users with one line message on why

concept design issues

vl concepts
Tag
' comment.ts
To label and categorize a person's journals Y errors.ts
0 N
It generates tags for a given text and keeps track of tags for a user friend.ts
Y friendSuggestion.ts

Tags: user - set String;

Friendship [User, Tag]

To connect users

9 point.ts

J postts Jack of modularity bites in code
N wgts added FriendSuggestion concept

M werts DUt sync shows not encapsulated

Y websession.ts

they want to be friends. The other user has the option to accept or decline the

principle

request. Once two users are friend, they will see their public posts.

users that have similar tags

OPs of Tag and Friendship are weak

NOtT C
NOt C

earin Tagw
ear in Frienc

nat the tags are for

ship how tags added

®Router.patch("/friendSug")

async generatefFriendSug(session: WebSessionDoc) {

const user = WebSession.getUser(session);

const userTags = (awalit Tag.getByUser(user)).userTags;
const otherTagsDoc = await Tag.getOtherTags(user),

new Map();

const otherTags
for (const TagDoc of otherTagsDoc) {
otherTags.set((await User.getUserById(TagDoc.user)).username, TagDoc.usexTags);

}

const suggestion = await FriendSug.generatefFriendSug(user, userTags, otherTags);

return suggestion;

a more modular design

concept Friend

classic concept, no tags

includes published posts

OP: it you friend someone and they post, you can read the post

concept UserTag

novel concept

assigns tags to users based on text they write

suggests user connections, for friends and other

OP: add texts associated with users, then ask for suggested friends

challenges & opportunities

how are tags selected?

ie, about design of UserTag concept

currently fixed set of tags

could GPT choose the tags? what if they change?
should users see the tags?

how else could tagging be used?
ie, how to sync UserTag concept with others

localink
(yinghou wang)

Current Location Name [N Channel 1 AREA Channel NAME (55) QO R

Near-by Channels Near-by Events AREA INFO
LasCription. .. See Posts...

49 people.... Time / Date

Message
Whois in..

Message

JOIN NOW... | Message

Message

Other Near-by Channel...

events with locations have chat channels; users can join the channels if their physical location is nearby

clever concept design ideas

Channel

concept Channel [User, Locatel
purpose
authenticate the user to temporarily join the channel
principle
when the users u have the same location with the channel
they are allowed to join the channel
state
channels: set String -> one Locate
member: channels -> set User
actions
search-nearby (u: User, c¢: Channel, out bool)
join (u: User, c¢: Channel, out mem: member)

quiet (u: User, c: Channel, out mem: member)

Channel concept
Channel is an authentication concept
user can only join channel when physically close

LocateTag concept
assigns location tags to users, events & channels

sync register(u, p: String, out user:User)
sync login(u, p: String, out u:User, out s: Session)
Session. start (user, session)

ExpiringResource.allocate (session, 300)

sync logout (s: Session)
Session.end(session)

ExpiringResource.deallocate (session)

ExpiringResource concept
used to expire session (but not channel access)

concept design issues

Message

concept Message [User, Item])

purpose exchange of message

principle
after a user sends a message to other users,
they can recelve that message

state
from, to : Msg —-> set User
body: Msg -> one Item

actions
send (from, to: User, body: Item, out m: Msg)
recv (u: User, m: Msg)

Message concept
nice attempt to generalize over channel vs direct msg
but not clear how messages are stored in channel

// concept Tag [Item (a generic type)]

// purpose

// organize and show the new created item to users

!/ principle

// when a new item of content 1s created, 1t should be
// categorized and taged with a set of labels(strings)
// state

// label: Item —> set String

new Tag concept added in code
so messages can be tagged with channels, eg

(OPRouter.post("/message")
async sendMessage(session: WebSessionDoc, chatchannel: string, contents: string) {

const sender = WebSession.getUser(session);
const the_channel = await Channel.getChannelByName(chatchannel);
const receivers = the_channel.members;
const the_message = [];
// check 1f the sender i1s in the channel
if (await Channel.checkauthorized(the_channel._id, sender)) {

for (const users of receivers) {

the_message.push(await Message.send(sender, users, contents));

¥
} else {

throw new Error("You are not authorized to send a message!");
H
// assign each message with a tag of 1t's channel name
const the_tag = await Tag.searchTag{chatchannel, "private_label");
if (the_tag === null) {

// should be a private tag

throw new Error("Should be a private event for this channel");
} else {

for (const message of the_message) {

1f (message.message && the_tag._id) {
awalt Tag.addItemtoTag(message.message._id, the_tag._id);

h

return the_message;

leads to complicated sync & lack of encapsulation

a more modular design

concept Channel

classic concept, just a chatroom
contains messages from members
and controls access to members

concept LocalResource

novel concept that guards access by location

can be applied by sync to channels and other things

encapsulates calculation of proximity

also handles timing: can you still access it in proximity time T ago?
maybe set expirations separately by channel

simplifications

Channel Event LocateTag Label

Message Item

Friends Z N User N\, Session

remove some concepts

remove Event? just let Channel have header/profile
remove Friend? dependencies are unclear

remove Label? not clear what role it plays

challenges & opportunities

how is location determined?
in a2 museum or classroom, gain access via wifi?

what are the location rules?
was there in last hour? last day?

which actions are location limited?
joining a channel? posting in a channel?

precedents
FourSquare

community carpool
(henry asa)

ﬁ‘) | /s Boston ’layers l 3 E

h Comm ,arpool L) E

Carpoolers and Role

Your Activitie Upcoming Carpool
R oriver
o You have to drive Henry to MIT Water Polo today. Practice ‘Q ©
\1"{ MIT Water Poio starts at 5:00, and based on the traffic conditions, we § mins away O 4‘7‘
b Cambridge, MA e recommend leaving by 4:27. iy’
Camcuridge
x
== Q o Boston
', MlT POker CIUb 4 mins away < Dropped Off

Cambridge, MA

@ |‘ b | T s MIT \ ‘Polo ﬁ

Ol

Brookline

. ~ . Hebrew School at
“" Harvard Hillel

Cambridge, MA e
EE Piano Lessons
Somerville, MA

ArTs ArtLessons @ Arts at MIT
AT MIT
=)

On-Route

Carpool:

Boston-Side Players
Boston, MA e

| Carpool Stat:

' h poo Vv d 2 EV an Hey guys, something came up and | won't be able to get to practice on my
e 2 own today. Would anybody be able to pick me up on their way to
m . car d V hassa 1 \ Bmins away | practice? We have some important games 1o train for this weekend, and |
i|es f I'i ing hiCh iS the Omindetour | would hate to miss practice. Thanks!
'

Z//’l‘ On-Campus Players

f’d"’ g Cambridge, MA &

Hey Evan, | can definitely pick you up on my way to practice.
I'm gonna be at your place at 4:45,

equivalent of 0.5 tons of CO2! i) flex.

Cambridge, MA

Activity Participant:

user has activities 8] B2 b bd

S mins away
2 mun detour 8 min detowr 9 mi towr 11 min detowr

carpool has chatroom & route

Hey guys, something came up and | won't be able to get to practice on my
own today. Would anybody be able to pick me up on their way to
practice? We have some important games to train for this weekend, and |
would hate to miss practice. Thanks!

Evan

6 mins away
9 mén detour

15 mins awan S mins away o 4 mins Ny Alex

11 min detour 2 men detour " towr 4 mins ami 'l
8 min detour

Hey Evan, | can definitely pick you up on my way to practice.
I'm gonna be at your place at 4:45,

each activity has carpools & activity chat room

highlights

Activity [User] Publicity of User's Location Data

As part of the Community Carpool carpool coordination process Users' home addresses

Purpose
are viewable to all members of an Activity thata User is amember of. Assuming that
A subset of Users in a private group, where data is only accessible to those in the group. people trust the other Users that they participate in these Activities with, this doesn't
o pose an inherent danger to a person (which is why | designed the application this way), but
Principle
It could still be considered a little bit of a breach of privacy, as this rather sensitive location
Activities are subsets of Users who all share a commonality (participating in the same data can be viewed by others. The rationale was that this is not too different from a Phone
activity). Private messaging, information, and data can be accessed by Users who have Book, but | realize that these databases are not great for User privacy either.
been approved to join the Activity and is only accessible to Activity members. .
Options
ACtiVity Concept Define a Home Area Rather Than Address Display Users' Addresses to the Activity

joining activity is protected by password shared OOB

Rather than displaying Users' actual addresses to all of the Members of an
Activity , a small radial circle that encloses a User's address could have been
used, and then when a Carpool is configured, the actual address of the person

would be shared with the members of that Carpool .

While this is a viable option that does not reduce too much functionality, it makes
coordinating carpools a bit less convenient, as people would not see exactly where

another User may live.

design tradeoffs well expressed & organized
eg, who is user location shared with?

concept design issues

Post [User]

Purpose
Enables Users to share information with each other.
Principle

Users can create content and upload it to Carpool Community as a Post , allowing other
Users to interact with this content, Comment onit, and react to it. Posts are a semi-
public form of communication, where Users choose which subset of Users can view the

Past .

Post concept

has complex and unclear OP

seems to be coupled to Carpool

posts not yet carpool specific in code?

User

Purpose
Allow users to create a public-facing user profile so that they can use tha app.
Principle

Users are represented by user profiles, which enables users to register for Activity

Groups , set their addresses, and serves as a one-stop-shop for information about that

user.
State
registeredUsers: set User
username: string, password: string -> register(u: string, p: string) -> User

name: string

address: string -> setlLocation{(address) -> Location

User concept
combines authentication with locations
beware of OOP temptations!

consequences of spreading functionality across concepts

export interface UserDoc extends BaseDoc { G@Router.patch("/activities/join/:name")

username: string; async joinActivity(session: WebSessionDoc, name: string, join_code: string) {

const user = WebSession.getUser(session);

password: string; const activity = await Activity.getActivityByName(name);

// address?: LocationDoc: const members

posts: Array<ObjectId>; return {
msg: User has been successfully added to the activity '${name}'’,

awalit Activity.addUserToActivity(activity._id, user, join_code);

joinedActivities: Array<ObjectId>;
members: members,

jolinedCarpools: Array<ObjectId>; b

User concept includes Activity state sync forgets to update User

a more modular design

concept Group
classic concept, just a chatroom
has profile/header, so can play role of Activity

concept Carpool

novel concept

has reference to a Group for conversation

and to associated activity (which is just another Group)
encapsulates functionality for planning routes

could also take candidate users and partition into carpools
note this is not a OO class!

simplifications

Map \;_Carpool_j] \ Reactions
Location [4——— Activity ‘Comments
N
‘Messaging —— User 4————— Post
"Session;

remove some concepts
Post enough: remove Comment and Reaction?
also remove direct Messaging?

challenges & opportunities

how are carpools constructed?
find route based on shortest detours
assign to carpools for best efficiency
rotating drivers (Henry discusses this)

are carpools repeated?
one off vs regular?

innerfinity

(linda chen)

. s (A B & 2 o) =%
wlnnerF'”'ty Feed Post | Friends Lists Hidden Approve Sewungs
New Post

st Cay

Choose a | f d 0st)

Choose aud () Choose (lists):
Create Post

o o 2\ %
w I n nerFI n Ity Feﬂ Dgt Friends Lm&x hn’em*

3$ 10 Your Posts ’ Approve Group Posts

friends are divided into smaller “lists”

can grant access to lists or individual users

Jane Doe, Alex Jones, John Smith

Users with access: Jane ’ X ‘ ' mith, Anna Y

can name other users as joint authors
other authors must then approve

WMpprovwe Setungs

highlights

Concept Group[User]

Concept Sharing[Resource, User]
* Purpose interact with users within a custom group

e Principle after a user creates a group, they can add members to or remove members * Purpose control access permissions for a resource
from the group. All members of the group can see the group. * Principle the owner of a resource limits access permissions for a resource to a subset of
e State users U, and chooses whether to allow other users to request access. After creating the

Sharing permissions, all users in U can see the resource, and all users not in U can

* groups: set Group request access to the resource. After a user requests access, the owner approves or

¢ name: Group = one String denies them access. The owner can also separately add or remove access for users.
e creator: Group - one User e State
* members: Group > set User * shared: set Sharing

e owner: Sharing - one User

e content: Sharing - one Resource

Group Concept (Iater renamed LISt) * withAccess: Sharing - set User
generic over User, allows group to be a member + allowRequests: Sharing > one Boolean

e requestedAccess: Sharing = set User

Concept Post[Authors]

®
* Purpose share content with others Sharlng Concept
* Principle after creating a post p, all authors must approve the post if there are multiple enables ﬁ ne-grained ad hOC Sharing
authors. After a post has been approved, a post p will be posted and other users will be

able to see p.
¢ State
e pendingPosts: set Post
* publishedPosts: set Post
¢ authors: Post -» one Authors

e content: Post = one Media (Note: Media is just an Image and String.)

Post concept
really nice, note strong OP (but needs more state)

concept design issues

our forum discussion

initially wanted to post as group

a concept overloading: two purposes for Group
privacy issue: group names became public
encapsulation issue: approval becomes part of Group

PRouter.get("/accessiblePosts")
async getAccessiblePosts(session: WebSessionDoc) {
const user = WebSession.getUser(session);

(await Userlist.getUserlListsByMember(user)).map((x) => x._id);

const userlLists
const resources = awalt PostSharing.getResourcesByAccessible(user, userLists):
const postIDs = resources.map((record) => record.resource);

const posts = await Post.getPublishedPosts({ _id: { $in: postIDs } });

return Responses.posts(posts):

Sharing and List concepts are not cleanly separated
list members passed to sharing for check each time

a more modular design

concept AccessList [User, Item] encapsulates management of
purpose manage access to items through flexible lists lists and granting permissions

principle user creates list and grants access to item for
that list, then members of the list can access the item

state
owner: List -> one User
members: List -> set User
name: List -> one String
author: Item -> one User
access: Item -> set List + User

actions
create (owner: User, name: String, out List: List)
add (u: User, L: List)
grant (1: Item, x: List + User)
access (u: User, 1: Item)

simplifications

| Sha{ring ’

Friend GFOUD N

Profile

Session . . User - Post

can Friend be removed?

already treated in Ul as a named list but has its own concept
allow some lists to be public and have request to join?

challenges & opportunities

is management of lists too much work?
maybe shared lists (eg, WhatsApp) easier?

Google + collaborative authoring
(2011-2019) could this be the sole basis for a new app?

takeaways

concept >> class

a concept can be more than a class, multiple collections
eg, Carpool has users to match as well as carpools
eg, Friend has requests and accepted

encapsulate state/actions by function

don't allocate state based on where youd put an attribute
avoid coupling between concepts

eg, user location belongs to location-specific concept, not User

concepts embody rich behavior

enough state and actions to embody rich behaviorin concept
tipoff: weak operational principle, syncs with control flow or maps
eg, separating Msg from Group prevents Group controlling access

simplifying
most of these have one really novel idea
can trim away some of the other concepts

example of a clean sync

@Router.delete("/posts/:_id")
async deletePost(session: WebSessionDoc, _id: ObjectId) {
const user = WebSession.getUser(session);
await Post.isAuthor(user, _id);
await Comment.deleteByTarget(_id);
return Post.delete(_id);

from Amir's code

successful app = novel concept or novel sync

location-based playlist x group,

access, channel x location,
collaborative post chat x carpool

biggestissue = lack of encapsulation

results in complex
syncs and loss of
modularity

seen in weak OPs
refs to other concepts

